• українська
    • English
  • English 
    • українська
    • English
  • Login
View Item 
  •   Repository home
  • Кафедра психолого-педагогічної освіти та соціальних наук
  • Матеріали працівників кафедри
  • View Item
  •   Repository home
  • Кафедра психолого-педагогічної освіти та соціальних наук
  • Матеріали працівників кафедри
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An empirical comparison of machine learning clustering methods in the study of Internet addiction among students majoring in Computer Sciences

Thumbnail
View/Open
paper03_compressed.pdf (290.0Kb)
Date
2019-11-29
Author
Klochko, Oksana
Fedorets, Vasyl
Metadata
Show full item record
Abstract
One of the relevant current vectors of study in machine learning is the analysis of the application peculiarities for methods of solving a specific problem. We will study this issue on the example of methods of solving the clustering problem. Currently, we have a considerable number of learning algorithms which can be used for clustering. However, not all methods can be used for solving a specific task. The article describes the technology of empirical comparison of methods of clustering problem solving using WEKA free software for machine learning. Empirical comparison of data clustering methods was based on the results of a survey conducted among students majoring in Computer Sciences and dedicated to detecting signs of Internet addiction (IA) as behavioural disorder that occurs due to Internet misuse. Empirical comparison of Expectation Maximization, Farthest First and K-Means clustering algorithms together with the application of the WEKA machine learning system had the following results. It described the peculiarities of application of these methods in feature clustering. The authors developed data instances’ clustering models to detect signs of Internet addiction among students majoring in Computer Sciences. The study concludes that these methods may be applicable to development of models detecting respondent groups with signs of IA related disorders.
URI
https://docs.academia.vn.ua/handle/123456789/1633
Collections
  • Матеріали працівників кафедри

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV