• українська
    • English
  • English 
    • українська
    • English
  • Login
View Item 
  •   Repository home
  • Кафедра психолого-педагогічної освіти та соціальних наук
  • Матеріали працівників кафедри
  • View Item
  •   Repository home
  • Кафедра психолого-педагогічної освіти та соціальних наук
  • Матеріали працівників кафедри
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empirical comparison of clustering and classification methods for detecting Internet addiction

Thumbnail
View/Open
CTE_664_Klochko_et_al_compressed.pdf (435.0Kb)
Date
2024
Author
Klochko, Oksana V.
Fedorets, Vasyl M.
Klochko, Vitalii I.
Metadata
Show full item record
Abstract
Machine learning methods for clustering and classification are widely used in various domains. However, their performance and applicability may depend on the characteristics of the data and the problem. In this paper, we present an empirical comparison of several clustering and classification methods using WEKA, a free software for machine learning. We apply these methods to the data collected from surveys of students from different majors, aiming to detect the signs of Internet addiction (IA), a behavioural disorder caused by excessive Internet use. We use Expectation Maximization, Farthest First and K-Means for clustering, and AdaBoost, Bagging, Random Forest and Vote for classification. We evaluate the methods based on their accuracy, complexity and interpretability. We also describe the models developed by these methods and discuss their implications for identifying the respondents with IA symptoms and risk groups. The results show that these methods can be effectively used for clustering and classifying IA-related data. However, they have different strengths and limitations when choosing the best method for a specific task.
URI
https://docs.academia.vn.ua/handle/123456789/1669
Collections
  • Матеріали працівників кафедри

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV