• українська
    • English
  • українська 
    • українська
    • English
  • Ввійти
Перегляд матеріалів 
  •   Головна сторінка
  • Кафедра психолого-педагогічної освіти та соціальних наук
  • Матеріали працівників кафедри
  • Перегляд матеріалів
  •   Головна сторінка
  • Кафедра психолого-педагогічної освіти та соціальних наук
  • Матеріали працівників кафедри
  • Перегляд матеріалів
JavaScript is disabled for your browser. Some features of this site may not work without it.

An IoT system based on open APIs and geolocation for human health data analysis

Thumbnail
Переглянути
0257eb9cc4cae40d4e7301b40547246be6d0_compressed.pdf (384.8Kb)
Дата
2023
Автор
Klochko, Oksana V.
Fedorets, Vasyl M.
Mazur, Maksym V.
Liulko, Yurii P.
Metadata
Показати повний опис матеріалу
Короткий опис(реферат)
Development of applications based on open API is becoming increasingly popular today. Innovative projects using these technologies provide new opportunities for real-time human health monitoring. Such opportunities are also implemented using Internet of Things (IoT), artificial intelligence (AI) and cloud computing technologies. In the study, we developed an application based on open APIs using smart gadgets and meteorological geographic information system in the process of generating a message about the dangers to human health associated with: the presence of pollen in the air (grass pollen, birch pollen and olive pollen) indicating the level of its concentration in the air; problems with air quality, if the air quality indicator exceeds the permissible standards. The addition of such functions expands the possibilities to provide timely information about potential risks and threats and, accordingly, is an “anthropo-geo-sensor-digital” prerequisite for effective decision-making, prevailing. The implementation of this IoT system has significant methodological and technological potential that can be used to improve the efficiency of Healthcare, both in extreme conditions and in conditions of sustainable existence. First of all, this is relevant during and after the COVID-19 pandemic. The system we have developed can also be seen as one of the ways to innovate in Healthcare, in the educational process in institutions of higher education and in further scientific research on this topic. Further research in this area may be related to data processing in Healthcare systems based on machine learning, deep learning.
URI
https://docs.academia.vn.ua/handle/123456789/1648
Collections
  • Матеріали працівників кафедри

DSpace software copyright © 2002-2016  DuraSpace
Контакти | Зворотній зв'язок
Theme by 
Atmire NV
 

 

Перегляд

Всі матеріалиФонди та колекціїЗа датою публикаціїАвториЗаголовкиТемиКолекціяЗа датою публикаціїАвториЗаголовкиТеми

Мій профіль

Ввійти

DSpace software copyright © 2002-2016  DuraSpace
Контакти | Зворотній зв'язок
Theme by 
Atmire NV